
CLICK TO ADD MASTER TITLE ALL CAPS

Click to edit Master subtitle style

PiXiE: A Self-Propagating Network Boot Virus for Windows

Derek Soeder
Software Engineer, eEye Digital Security

February 2006

2

Infected

What is PiXiE?

• About PiXiE

– Proof-of-concept (harmless) virus

– Spreads to Windows 2000+ systems via network boot

– Sends code to BIOS PXE agent of booting systems

– Activates powered-off systems using Wake-on-LAN

Infected

Power On
DHCP Request

DHCP Response

TFTP Request

TFTP Response

Browser Broadcast

Power Off Wake-on-LAN

W
ake-on-LAN

Power On

DHCP Request

D
H
C
P
 R

esponse
DHCP Response

D
H
C
P R

equest

TFTP R
equest

TFTP R
esponse

Infected

3
Overview

• Stage 1: Bootstrap / Kernel Code

– Based on eEye BootRoot v2.0

– Executes before Windows;
infiltrates kernel as it loads

– Hooks NDIS.SYS to sniff network traffic

• Stage 2: User-Mode DLL

– Injected into a system process by
kernel-mode code

– Hosts viral DHCP and TFTP servers for network boot

– Sends Wake-on-LAN packets to systems that shut down

4
eEye BootRoot: Background

• Bootstrap code that subverts Windows NT-family kernel

– Presented at Black Hat USA 2005

– First known public implementation of concept

– eEye BootRoot v1.0

• Step 1: Patch OSLOADER as it loads by hooking INT 13h (Disk)

• Step 2: Traverse loaded boot driver list to patch kernel / drivers

• BootRootKit v1.0

– Uses eEye BootRoot v1.0 techniques

– Hooks NDIS.SYS to execute kernel
code from packets with a specific signature

5
eEye BootRoot v2.0: Features

• Compatibility and robustness

– No specific byte signatures or version-dependent structures

– Only uses kernel APIs supported by NT4/2000/XP/2003

– Compensates for buggy BIOSes that misreport conventional
memory limit from INT 15h/AX=E820h

• Showcases fun technology

– Pure memory (no file) DLL injection from kernel

– NTOSKRNL export lookup using 8-bit name hashes

– Disassembler engine for function entry point hooking

– Hides physical memory with INT 15h hook

6
eEye BootRoot v2.0: Overview (1)

• Phase 1: Bootstrap Code

– Reserves conventional memory

– Makes modified system memory map to reserve memory

– Loads DLL into reserved memory

– Hooks INT 13h to modify image sizes on load

– Hooks INT 15h to serve up modified memory map

– Executes hard drive Master Boot Record

0
0
0
0
0
0
0
0

0
0
0
0
0
4
0
0

0
0
0
0
0
5
0
0

0
0
0
0
7
C
0
0

0
0
0
0
7
E
0
0

0
0
0
2
0
0
0
0

0
0
0
9
x
x
0
0

0
0
0
A
0
0
0
0

x
x
x
x
x
x
x
x

Interrupt Vector Table

BIOS Data Area

Stack

Boot Sector NTLDR Destination

0
0
1
0
0
0
0
0

Video / BIOS Memory

BootRoot Resident Code

DLL Image Storage

7
eEye BootRoot v2.0: Overview (2)

• Phase 2: INT 15h Hook

– Provides NTLDR with a modified memory map

– Also hooks “LIDT [ofs32]” instructions in OSLOADER code

(loaded immediately after NTLDR)

• Simple and generic-ish way to retain control across switch to
protected mode

• Allows us to modify IDT before it takes effect

• Phase 3: LIDT Hook

– Hooks INT 0Dh (General Protection Fault) before doing LIDT

– Sets code descriptor (GDT#0008h) limit = 0x7FFFFFFF

• Allows us to catch transfer to NTOSKRNL entry point

8
eEye BootRoot v2.0: Overview (3)

• Phase 4: INT 0Dh (#GP) Hook

– Restores CS descriptor limit = 0xFFFFFFFF

– Searches module list for NTOSKRNL

• OSLOADER’s _BlLoaderBlock is entry point’s stack argument

– Expands last section of NTOSKRNL and copies in our code

– Looks up imports from NTOSKRNL

– Hooks MmMapViewOfSection and PspCreateThread

– Displays yellow smiley

– Resumes execution of NTOSKRNL entry point

9
eEye BootRoot v2.0: Overview (4)

• Phase 5: PspCreateThread hook

– Located by scanning PsCreateSystemThread for “CALL rel”

– Activates when first thread is created in target process

• Finds process name offset by searching System Process object for
“System” string

• Checks VM_COUNTERS.QuotaPeakNonPagedPoolUse from
NtQueryInformationProcess(ProcessVmCounters) to determine if
this is first thread in process

• If so...

10
eEye BootRoot v2.0: Overview (5)

• Phase 5a: DLL Injection

– Creates “\KnownDlls\XXXXXXXX.dll” memory section

• Where “XXXXXXXX” is hexadecimal address of Process object

• Creates and maps temporary view of section

• Manually maps and copies DLL from physical memory into view

– Allocates memory and copies in DLL injection code

• Calls NTDLL.DLL!LdrLoadDll(“XXXXXXXX.dll”) to take advantage
of native loader code (does imports, relocations, etc.)

• LdrpMapDll tries to open “\KnownDlls___.dll” section before
accessing file (e.g., “\WINNT\system32___.dll”), for performance

– Hijacks EIP in new thread’s context

• Originally pointed to EXE entry point or BaseProcessStartThunk

• Now it points to our DLL injection code

11
eEye BootRoot v2.0: Overview (6)

• Phase 6: MmMapViewOfSection hook

– If Section object is “\KnownDlls\XXXXXXXX.dll”:

– Changes ‘Protect’ argument from PAGE_READWRITE to
PAGE_EXECUTE_READWRITE

• We must force +X since this is not a real SEC_IMAGE section

– Invokes original MmMapViewOfSection

– If STATUS_SUCCESS is returned, changes return value to
STATUS_IMAGE_NOT_AT_BASE

• This forces NTDLL loader to apply relocations

12
PiXiE: Kernel Code

• “Kernel code” includes boot loader code as well

• Basically BootRoot v2.0, except:

– Hooks NDIS.SYS!ethFilterDprIndicateReceivePacket to sniff
network traffic for Browser broadcasts

– Communicates MAC addresses of powering-down hosts to
user-mode DLL via memory section

– Target process is “LSASS.EXE”

• Starts early in boot sequence

• Required for proper system operation

• Always unique

• Loads Winsock and hosts servers (ISAKMP, LDAP, etc.) normally

13
PiXiE: User-Mode DLL

• Hosts majority of viral code

– Starts DHCP and TFTP servers as soon as possible

• DHCP server answers requests asking for “Boot File Name”; other
requests are ignored so real DHCP server can answer

• TFTP server sends back PiXiE kernel code + DLL as requested file

– Periodically polls list of shutting-down MAC addresses

• Sends Wake-on-LAN packet for MAC address until a DHCP
request is received, or entry becomes “stale”

• Not too interesting technically, so...

14
Demonstration

Let’s see it in action!

• One infected host on LAN...

• Another host attempts to use network boot...

• Another host powers down and is awakened...

15
Questions?

E-mail me:

